Recognizable Picture Languages and Polyominoes

Giusi Castiglione ${ }^{a}$ Roberto Vaglica ${ }^{a}$

${ }^{a}$ Dipartimento di Matematica e Applicazioni
Università di Palermo
via Archirafi, 34-90123 Palermo, Italy
giusi, vaglica@math.unipa.it

Conference on Algebraic Informatics (CAI 2007)

Outline

(1) Polyominoes

- Basic definitions
- Particular new families of polyominoes
(3) Tiling recognizability
- Basic definitions
- Method to check tiling recognizability
(3) Polyominoes \& recognizability
- Recognizability of new particular classes of polyominoes
- Particular new families of polyominoes

Outline

(1) Polyominoes

- Basic definitions
- Particular new families of polyominoes
(2) Tiling recognizability
- Basic definitions
- Method to check tiling recognizability
(3) Polyominoes \& recognizability - Recognizability of new particular classes of polyominoes - Particular new families of polyominoes

Outline

(1) Polyominoes

- Basic definitions
- Particular new families of polyominoes
(2) Tiling recognizability
- Basic definitions
- Method to check tiling recognizability
(3) Polyominoes \& recognizability
- Recognizability of new particular classes of polyominoes
- Particular new families of polyominoes

Polyominoes

[S.W. Golomb: Polyominoes (1954)]
[M. Gardner: Mathematical Games (1957)]

A polyomino is a finite union of elementary cells of the lattice \mathbb{Z}^{2} defined up to translations (discrete set) in which each cell is connected to each other.
\checkmark Two cells of a discrete set S are said to be connected if they can be joined with a path (i.e. sequence of adjacent cells), included in S.

Polyominoes

- Decidability problems concerning the tiling of the plane using polyominoes [Conway-Lagarias (1990), Beauquier-Nivat(1991)];
- Enumeration problems [Delest-Viennot(1984)];
- Reconstruction of polyominoes from partial informations (for example discrete tomography) [Ryser(1956), Barcucci-Del Lungo et al.(1996), Kuba-Balogh(2002)] ;

Convex Polyomino $-\rightarrow$ polyomino in which every row and column is connected

L-convex Polyominoes

Proposition: A polyomino P is convex iff every pair of cells can be connected by a monotone path.

An L-convex polyomino p is a convex polyomino in which every pair of cells is connected by a monotone path, of cells of p, with at most one change of direction. Such a path is called (cause its shape) L-path.

Monotone path: Self-avoiding path that consists of steps in, at most, two directions.

L-convex Polyominoes

Proposition: A polyomino P is convex iff every pair of cells can be connected by a monotone path.

An L-convex polyomino p is a convex polyomino in which every pair of cells is connected by a monotone path, of cells of p, with at most one change of direction. Such a path is called (cause its shape) L-path.

2-convex

Monotone path: Self-avoiding path that consists of steps in, at most, two directions.

A discrete set and its representations in terms of a binary matrix and a set of cells.

Switching component

Definition: A switching component of a binary matrix is a 2×2 submatrix of either of the following two forms:

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { or } A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Lemma: Each L-convex polyomino has no switching component

Switching component

Definition: A switching component of a binary matrix is a 2×2 submatrix of either of the following two forms:

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { or } A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Lemma: Each L-convex polyomino has no switching component

Switching component

Theorem: A convex discrete set
is L-convex iff it has no switching component

Family of discrete sets with no switching component

Switching component

Theorem: A convex discrete set
is L-convex iff it has no switching component
$\mathcal{U} \rightarrow$ Family of discrete sets with no switching component

$$
\mathcal{L}=\mathcal{C} \cap \mathcal{U}
$$

Definition: A polyomino p is called L_{h} - convex (resp. L_{v} - convex) if it is h - convex (resp. v - convex) and it has no switching component.

Definition: A polyomino p is called L_{h} - convex (resp. L_{v} - convex) if it is h - convex (resp. v - convex) and it has no switching component.

$$
\begin{gathered}
\mathcal{L} \subseteq \mathcal{L}_{h} \subset \mathcal{U}, \mathcal{L} \subset \mathcal{L}_{V} \subseteq \mathcal{U} \\
\mathcal{L}=\mathcal{L}_{h} \cap \mathcal{V}=\mathcal{L}_{V} \cap \mathcal{H}=\mathcal{C} \cap \mathcal{U}
\end{gathered}
$$

and

$$
\mathcal{L}=\mathcal{L}_{h} \cap \mathcal{L}_{V}
$$

Picture Languages

A picture is a two dimensional rectangular array of elements in a finite alphabet Σ.
$\Sigma^{* *}$ all pictures over Σ
$p \in \Sigma^{m, n}$ has size (m, n)
$L \subseteq \Sigma^{* *} \quad \leftarrow--\quad$ picture language
Boundaries of a picture

$\widehat{\mathrm{p}}=$| $\#$ | $\#$ | $\#$ | $\#$ | $\#$ |
| :---: | :---: | :---: | :---: | :---: |
| $\#$ | P_{11} | \ldots | $\mathrm{P}_{1 \mathrm{l}}$ | $\#$ |
| $\#$ | \vdots | \ddots | \vdots | $\#$ |
| $\#$ | $\mathrm{P}_{\mathrm{m} 1}$ | \ldots | P_{xm} | $\#$ |
| $\#$ | $\#$ | $\#$ | $\#$ | $\#$ |

Column concatenation

Recognizable Picture Languages and Tiling System

A picture language L over Σ is called local if there exists a finite set Θ of tiles over $\Sigma \cup\{\sharp\}$ such that $L=\left\{p \mid p \in \Sigma^{*, *}\right.$ and $\left.B_{2,2}(\hat{p}) \subseteq \Theta\right\}$.
L is recognizable by tiling system(or equivalently tiling recognizable) if $L=\pi\left(L^{\prime}\right)$ where L^{\prime} is a local language and π is a mapping from the alphabet Σ of L^{\prime} to the alphabet Γ of L

$$
\text { projection of a picture } \rightarrow p(i, j)=\pi\left(p^{\prime}(i, j)\right) \forall i, j
$$

tile: a square picture of size $(2,2)$
$(\Sigma, \Gamma, \Theta, \pi)$, where $L^{\prime}=L(\Theta)$, is called tiling system

Recognizable Picture Languages and Tiling System

A picture language L over Σ is called local if there exists a finite set Θ of tiles over $\Sigma \cup\{\sharp\}$ such that $L=\left\{p \mid p \in \Sigma^{*, *}\right.$ and $\left.B_{2,2}(\hat{p}) \subseteq \Theta\right\}$.
L is recognizable by tiling system(or equivalently tiling recognizable) if $L=\pi\left(L^{\prime}\right)$ where L^{\prime} is a local language and π is a mapping from the alphabet Σ of L^{\prime} to the alphabet Γ of L

$$
\text { projection of a picture } \rightarrow p(i, j)=\pi\left(p^{\prime}(i, j)\right) \forall i, j
$$

tile: a square picture of size $(2,2)$
$(\Sigma, \Gamma, \Theta, \pi)$, where $L^{\prime}=L(\Theta)$, is called tiling system

Polyominoes as pictures

TilingRecognizable
[F. DeCarli.A.Frosini.S.Rinaldi.L. Vuillon]
TilingRecognizable [K.Reinhardt(1998)]

Polyominoes as pictures

TilingRecognizable

[F.DeCarli,A.Frosini,S.Rinaldi,L. Vuillon]

TilingRecognizable [K.Reinhardt(1998)]

Polyominoes as pictures

$\mathcal{H}, \mathcal{V}, \mathcal{C} \quad \rightarrow$
 TilingRecognizable
 [F.DeCarli,A.Frosini,S.Rinaldi,L. Vuillon]
 TilingRecognizable
 [K.Reinhardt(1998)]

How to prove the non-recognizability of a picture language?

```
Lemma (Matz)
Let I}\subseteq\mp@subsup{\Sigma}{}{*,*}\mathrm{ he tiling recognizable. Let {MM}ncw be a sequence of
sets }\mp@subsup{M}{n}{}\subseteq\mp@subsup{\sum}{}{n,+}\times\mp@subsup{\Sigma}{}{n,+}\mathrm{ such that }\foralln\mathrm{ following relations hold:
\[
\begin{gathered}
\forall(p, q) \in M_{n} \text { we have } p q \in L \\
\forall(p, q) \neq\left(p^{\prime}, q^{\prime}\right) \in M_{n} \text { we have }\left\{p^{\prime} q, p^{\prime} q\right\} \nsubseteq L
\end{gathered}
\]
```

Then $\left|M_{n}\right|$ is $2^{O(n)}$

How to prove the non-recognizability of a picture language?

Lemma (Matz)

Let $L \subseteq \Sigma^{*, *}$ be tiling recognizable. Let $\left\{M_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of sets $M_{n} \subseteq \Sigma^{n,+} \times \Sigma^{n,+}$ such that $\forall n$ following relations hold:

$$
\begin{gather*}
\forall(p, q) \in M_{n} \text { we have } p q \in L \tag{1}\\
\forall(p, q) \neq\left(p^{\prime}, q^{\prime}\right) \in M_{n} \text { we have }\left\{p^{\prime} q, p^{\prime} q\right\} \nsubseteq L . \tag{2}
\end{gather*}
$$

Then $\left|M_{n}\right|$ is $2^{O(n)}$.

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability?

Theorem: (Reinhardi)
The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m<2^{n}$ and $n<2^{m}$, is recognizable.

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability? No, it isn't

Theorem: (Reinhardt)
The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m<2^{n}$ and $n<2^{m}$, is recognizable.

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability? No, it isn't

Theorem: (Reinhardt)

The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m<2^{n}$ and $n<2^{m}$, is recognizable.

L-convex ?

Theorem

Let $\left\{M_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of sets $M_{n} \subseteq \Sigma^{n,+} \times \Sigma^{n,+}$, with $\Sigma=\{0,1\}$. For all $n \in \mathbb{N}$, if M_{n} satisfies relations (1) and (2) with respect to the language \mathcal{L} of L-convex polyominoes then $\left|M_{n}\right|$ is $2^{O(n)}$.

$$
\begin{gathered}
\mathcal{L} \subseteq \mathcal{L}_{h} \subset \mathcal{U}, \mathcal{L} \subset \mathcal{L}_{V} \subseteq \mathcal{U} \\
\mathcal{L}=\mathcal{L}_{h} \cap \mathcal{V}=\mathcal{L}_{V} \cap \mathcal{H}=\mathcal{C} \cap \mathcal{U}
\end{gathered}
$$

and

$$
\mathcal{L}=\mathcal{L}_{h} \cap \mathcal{L}_{V}
$$

Theorem: $\mathcal{L}_{h}\left(\right.$ resp. $\left.\mathcal{L}_{V}\right)$ is not tiling recognizable.

Theorem: $\mathcal{L}_{h}\left(\right.$ resp. $\left.\mathcal{L}_{V}\right)$ is not tiling recognizable.
Idea of the proof:

Theorem: \mathcal{U} is not tiling recognizable.

$$
\begin{aligned}
& \mathcal{L} \subsetneq \mathcal{L}_{h} \subsetneq \mathcal{U}, \mathcal{L} \subsetneq \mathcal{L}_{V} \subsetneq \mathcal{U} \\
& \mathcal{L}=\mathcal{L}_{h} \cap \mathcal{V}=\mathcal{L}_{V} \cap \mathcal{H}=\mathcal{C} \cap \mathcal{U} \int^{\text {Non-recognizable }} \\
& \mathcal{L}=\mathcal{L}_{h} \cap \mathcal{L}_{V} \quad \text { Recognizable } \\
& \text { Non - recognizable }
\end{aligned}
$$

Conjecture: \mathcal{L} is not tiling recognizable.

