Recognizable Picture Languages and Polyominoes

Giusi Castiglione^a Roberto Vaglica^a

^aDipartimento di Matematica e Applicazioni Università di Palermo via Archirafi, 34 - 90123 Palermo, Italy giusi, vaglica@math.unipa.it

Conference on Algebraic Informatics (CAI 2007)

イロト イポト イラト イラ

Outline

Polyominoes

- Basic definitions
- Particular new families of polyominoes
- 2 Tiling recognizability
 - Basic definitions
 - Method to check tiling recognizability
- Polyominoes & recognizability
 - Recognizability of new particular classes of polyominoes
 - Particular new families of polyominoes

Outline

Polyominoes

- Basic definitions
- Particular new families of polyominoes

2 Tiling recognizability

- Basic definitions
- Method to check tiling recognizability
- Polyominoes & recognizability
 - Recognizability of new particular classes of polyominoes
 - Particular new families of polyominoes

Outline

Polyominoes

- Basic definitions
- Particular new families of polyominoes

2 Tiling recognizability

- Basic definitions
- Method to check tiling recognizability

Polyominoes & recognizability

- Recognizability of new particular classes of polyominoes
- Particular new families of polyominoes

Polyominoes

[S.W. Golomb: Polyominoes (1954)] [M. Gardner: Mathematical Games (1957)]

A polyomino is a finite union of elementary cells of the lattice \mathbb{Z}^2 defined up to translations (discrete set) in which each cell is connected to each other.

✓ Two cells of a discrete set S are said to be connected if they can be joined with a path (i.e. sequence of adjacent cells), included in S.

Polyominoes

- Decidability problems concerning the tiling of the plane using polyominoes [Conway-Lagarias (1990), Beauquier-Nivat(1991)];
- Enumeration problems [Delest-Viennot(1984)];

 Reconstruction of polyominoes from partial informations (for example discrete tomography) [Ryser(1956), Barcucci-Del Lungo et al.(1996), Kuba-Balogh(2002)];

5/19

Proposition: A polyomino P is convex iff every pair of cells can be connected by a monotone path.

An L-convex polyomino p is a convex polyomino in which every pair of cells is connected by a monotone path, of cells of p, with at most one change of direction. Such a path is called (cause its shape) L-path.

Monotone path: Self-avoiding path that consists of steps in, at most, two directions.

Proposition: A polyomino P is convex iff every pair of cells can be connected by a monotone path.

An L-convex polyomino p is a convex polyomino in which every pair of cells is connected by a monotone path, of cells of p, with at most one change of direction. Such a path is called (cause its shape) L-path.

Monotone path: Self-avoiding path that consists of steps in, at most, two directions.

A discrete set and its representations in terms of a binary matrix and a set of cells.

Switching component

Definition: A switching component of a binary matrix is a 2×2 submatrix of either of the following two forms:

$$A_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ or } A_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

emma: Each L-convex polyomino has no switching component

Switching component

Definition: A switching component of a binary matrix is a 2×2 submatrix of either of the following two forms:

$$A_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ or } A_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Lemma: Each L-convex polyomino has no switching component

(日)

Theorem: A convex discrete set

is L-convex iff it has no switching component

 $\mathcal{U} \longrightarrow$ Family of discrete sets with no switching component

$\mathcal{L}=\mathcal{C}\cap\mathcal{U}$

Theorem: A convex discrete set

is L-convex iff it has no switching component

$\mathcal{U} \longrightarrow$ Family of discrete sets with no switching component

$$\mathcal{L}=\mathcal{C}\cap\mathcal{U}$$

Definition: A polyomino p is called $L_h - convex$ (resp. $L_v - convex$) if it is h - convex (resp. v - convex) and it has no switching component.

Giusi Castiglione, Roberto Vaglica Recognizable Picture Languages and Polyominoes

10/19

Definition: A polyomino p is called $L_h - convex$ (resp. $L_v - convex$) if it is h - convex (resp. v - convex) and it has no switching component.

$$\mathcal{L} \subseteq \mathcal{L}_h \subset \mathcal{U} , \ \mathcal{L} \subset \mathcal{L}_v \subseteq \mathcal{U},$$
$$\mathcal{L} = \mathcal{L}_h \cap \mathcal{V} = \mathcal{L}_v \cap \mathcal{H} = \mathcal{C} \cap \mathcal{U}$$

and

$$\mathcal{L} = \mathcal{L}_h \cap \mathcal{L}_v$$

Picture Languages

A picture is a two dimensional rectangular array of elements in a finite alphabet Σ .

 Σ^{**} all pictures over Σ # # $p \in \Sigma^{m,n}$ has size (m, n)P11 $\widehat{\mathbf{p}} =$ # ÷ ×. $L \subset \Sigma^{**} \leftarrow --$ picture language P_{m1} # # £ ťΪ Column concatenation ⇔ pq =р q

Boundaries of a picture

A (A) > < (A) > >

Recognizable Picture Languages and Tiling System

A picture language *L* over Σ is called local if there exists a finite set Θ of tiles over $\Sigma \cup \{ \sharp \}$ such that $L = \{ p \mid p \in \Sigma^{*,*} \text{ and } B_{2,2}(\hat{p}) \subseteq \Theta \}.$

L is recognizable by tiling system(or equivalently *tiling recognizable*) if $L = \pi(L')$ where *L'* is a local language and π is a mapping from the alphabet Σ of *L'* to the alphabet Γ of *L*

projection of a picture $\rightarrow p(i,j) = \pi(p'(i,j)) \quad \forall i,j$

tile: a square picture of size (2,2)

 $(\Sigma, \Gamma, \Theta, \pi)$, where $L' = L(\Theta)$, is called tiling system

Recognizable Picture Languages and Tiling System

A picture language *L* over Σ is called local if there exists a finite set Θ of tiles over $\Sigma \cup \{ \sharp \}$ such that $L = \{ p \mid p \in \Sigma^{*,*} \text{ and } B_{2,2}(\hat{p}) \subseteq \Theta \}.$

L is recognizable by tiling system(or equivalently *tiling recognizable*) if $L = \pi(L')$ where *L'* is a local language and π is a mapping from the alphabet Σ of *L'* to the alphabet Γ of *L*

projection of a picture $\rightarrow p(i,j) = \pi(p'(i,j)) \quad \forall i,j$

tile: a square picture of size (2, 2)

 $(\Sigma, \Gamma, \Theta, \pi)$, where $L' = L(\Theta)$, is called tiling system

Polyominoes as pictures

 $\begin{array}{ccc} \mathcal{H}, \mathcal{V}, \mathcal{C} & \dashrightarrow & \\ \mathcal{H}, \mathcal{V}, \mathcal{C} & \dashrightarrow & \\ & & [F. DeCarli, A. Frosini, S. Rinaldi, L. Vuillow \\ \mathcal{P} & \dashrightarrow & \\ \end{array}$

[K.Reinhardt(1998)]

13/19

< ロ > < 同 > < 回 > < 回 > < 回 > <

Polyominoes as pictures

 $\mathcal{H}, \mathcal{V}, \mathcal{C} \xrightarrow{-- \rightarrow} \frac{\text{TilingRecognizable}}{[F.DeCarli, A.Frosini, S.Rinaldi, L. Vuillon]}$ $\mathcal{P} \xrightarrow{-- \rightarrow} \frac{\text{TilingRecognizable}}{[K.Beinhardt(1998)]}$

< ロ > < 同 > < 回 > < 回

13/19

Polyominoes as pictures

 $\mathcal{H}, \mathcal{V}, \mathcal{C} \xrightarrow{-- \rightarrow} \frac{\text{TilingRecognizable}}{[F. DeCarli, A. Frosini, S. Rinaldi, L. Vuillon]}$ $\mathcal{P} \xrightarrow{-- \rightarrow} \frac{\text{TilingRecognizable}}{[K. Reinhardt(1998)]}$

13/19

・ 同 ト ・ ヨ ト ・ ヨ

How to prove the non-recognizability of a picture language?

Lemma (Matz)

Let $L \subseteq \Sigma^{*,*}$ be tiling recognizable. Let $\{M_n\}_{n \in \mathbb{N}}$ be a sequence of sets $M_n \subseteq \Sigma^{n,+} \times \Sigma^{n,+}$ such that $\forall n$ following relations hold:

 $\forall (p,q) \in M_n \text{ we have } pq \in L \\ \forall (p,q) \neq (p',q') \in M_n \text{ we have } \{p'q,p'q\} \nsubseteq L.$

Then $| M_n |$ is $2^{O(n)}$.

14/19

・ 同 ト ・ ヨ ト ・ ヨ

How to prove the non-recognizability of a picture language?

Lemma (Matz)

Let $L \subseteq \Sigma^{*,*}$ be tiling recognizable. Let $\{M_n\}_{n \in \mathbb{N}}$ be a sequence of sets $M_n \subseteq \Sigma^{n,+} \times \Sigma^{n,+}$ such that $\forall n$ following relations hold:

$$\forall (p,q) \in M_n \text{ we have } pq \in L$$

$$\forall (p,q) \neq (p',q') \in M_n \text{ we have } \{p'q,p'q\} \nsubseteq L.$$

$$(1)$$

Then $| M_n |$ is $2^{O(n)}$.

< ロ > < 同 > < 回 > < 回 >

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability ?

Theorem: (Reinhardt)

The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m < 2^n$ and $n < 2^m$, is recognizable.

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability ? No, it isn't

Theorem: (Reinhardt)

The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m < 2^n$ and $n < 2^m$, is recognizable.

Is the language of squares over $\{a, b\}$ that have as many a's as b's an example of non-recognizable picture language for which Matz's Lemma fails to prove the non-recognizability ? No, it isn't

Theorem: (Reinhardt)

The language of picture over $\{a, b\}$, where the number of a's is equal to the number of b's and having a size (m, n) with $m < 2^n$ and $n < 2^m$, is recognizable.

L-convex ?

Theorem

Let $\{M_n\}_{n\in\mathbb{N}}$ be a sequence of sets $M_n \subseteq \Sigma^{n,+} \times \Sigma^{n,+}$, with $\Sigma = \{0,1\}$. For all $n \in \mathbb{N}$, if M_n satisfies relations (1) and (2) with respect to the language \mathcal{L} of L-convex polyominoes then $|M_n|$ is $2^{O(n)}$.

$$\mathcal{L} \subseteq \mathcal{L}_h \subset \mathcal{U} \,, \, \mathcal{L} \subset \mathcal{L}_v \subseteq \mathcal{U},$$

 $\mathcal{L} = \mathcal{L}_h \cap \mathcal{V} = \mathcal{L}_v \cap \mathcal{H} = \mathcal{C} \cap \mathcal{U}$
 $\mathcal{L} = \mathcal{L}_h \cap \mathcal{L}_v$

and

A > < = > < =

Theorem: \mathcal{L}_h (resp. \mathcal{L}_v) is not tiling recognizable.

17/19

з

→

- ₹ 🖬 🕨

Theorem: \mathcal{L}_h (resp. \mathcal{L}_v) is not tiling recognizable.

Idea of the proof:

 $M_n = \{ (p_\sigma, p_\sigma^s) \mid \sigma \in S_n \} \qquad |M_n| = |S_n| = n!$

17/19

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem: \mathcal{U} is not tiling recognizable.

з

→ ∃ → < ∃</p>

$$\mathcal{L} \subsetneq \mathcal{L}_{h} \subsetneq \mathcal{U}, \ \mathcal{L} \subsetneq \mathcal{L}_{v} \subsetneq \mathcal{U}$$

$$\mathcal{L} = \mathcal{L}_{h} \cap \mathcal{V} = \mathcal{L}_{v} \cap \mathcal{H} = \mathcal{C} \cap \mathcal{U}$$

$$\mathcal{L} = \mathcal{L}_{h} \cap \mathcal{L}_{v}$$
Recognizable
Non – recognizable

Conjecture: \mathcal{L} is not tiling recognizable.

19/19

з

A B + A B +